
Thoroughly read the system's documentation and
consult with experts to understand its
intended functionality.
Carefully step through the code, understanding
what each part is supposed to do. When in
doubt, don't guess — refer back to the
documentation or ask for clarification.

Read your script line by line, understand how
Python's CSV module works, and know how the
script interacts with the database.
If unsure about a function, you look it up in
the Python documentation.

Apply the divide & conquer algorithm to narrow
down the search area. Understand the range of
the search and determine if the bug is upstream
or downstream from the current point.
Ideally, start at a known problematic point and
work back up through the system, checking each
branch until finding the source of the bug.

Engage in a thorough search to identify the
exact cause of the bug. Rely on debug logging
to make the bug and its cause visible.
Avoid theorizing about potential causes without
evidence - do a practical search.
Remember the debug process might inadvertently
modify the conditions and hide the failure.

Replicate the failure under the exact
conditions it occurred, not just similar ones.
For intermittent failures, vary the conditions
until the issue can be can consistently
replicated. Document every detail, including
any seemingly irrelevant ones.

Your script is a multi-step process, and you're
unsure where it's failing. You add checkpoints at
the halfway point of each major section. If the
script fails before reaching the midpoint of a
particular section, you know the issue is
upstream. This helps you isolate the problematic
code block quickly.

You add print() statements or use Python's
logging module to log the data processed at each
step. You notice that the script fails when
encountering special characters. By logging the
exact input processed at the failure point, you
identify that the script doesn't handle Unicode
characters correctly.

Your script fails to process certain rows in the
CSV file. To replicate this, you ensure the
testing environment mirrors production with the
same CSV file, Python version, and database
setup. You run the script and observe it failing
on the same rows, confirming that you've
replicated the issue.

3. Search and Identify the Bug (Don’t theorize without evidence)

1. Understand the System (Read the code, documentation or ask)

4. Narrow the Search (Divide & Conquer or Successive Approximation)

2. Replicate the Failure (Observe and record the bug occurring again)

When attempting to replicate the failure or
identify the bug, change only one variable at
a time, changing back any variables to the
original condition before the next test.
Keep a forensic mindset, analyzing what has
changed since the last time the system worked
correctly.

Concise Guide to
Debugging Anything (1)

5. Change One Thing at a Time (Control all other variables)

You suspect the failure might be due to the
Python version or the CSV file format. First,
you change only the Python version while keeping
the same file to see if the issue persists.
Then, you revert to the original version and try
a different CSV file format. This controlled
approach helps identify the exact cause.

Example: A Python script that
processes user data from a CSV file
and stores results in a database.

Based on Debugging: The 9 Indispensable Rules for Finding Even the Most Elusive Software and Hardware Problems by David Agans; Examples and guide by andypi.co.uk

https://debuggingrules.com/
https://andypi.co.uk/

Keep a detailed audit trail of all actions
taken, the order in which they were done, and
the results of each action.
This record is invaluable in ensuring that all
areas have been checked, in providing a clear
account of your debugging process to others,
and serving as a reference for future issues

You maintain a detailed log file using Python's
logging module. Each action, such as opening a
file, processing a row, or making a database
entry, is logged with a timestamp. When the
script fails, you have a comprehensive record of
what happened immediately before the failure.
You explain the bug fix in a git commit message.

Rigorously test the fix to confirm it addresses
the issue. Then, remove the fix and retest to
ensure that the issue reoccurs, confirming that
your fix is directly resolving the problem.
For particularly elusive bugs, add logging to
capture details of the failure so it can be
traced if it occurs again in production.

When you've hit a wall, a fresh perspective
from others can shed new light on the problem.
Start with async online resources like
StackOverflow, ChatGPT before asking experts
(e.g. Github issues) which introduces delay
Always provide a bug description, logs, errors
and what has been checked so far, etc.

Always verify the most basic assumptions first,
such as whether the system is powered on, the
service is running or expired data is cached.
Before narrowing your search, confirm that the
entire scope of the system is being checked,
including all tools，dependencies and platforms
you're working with.

After adjusting your script to handle Unicode
characters, you re-run it with the same
problematic CSV file. It processes all rows
successfully. Then, you remove the fix and
confirm the script fails again, validating that
your fix directly addresses the issue.

If you fail to solve the issue independently, you
write a detailed question on ChatGPT. You include
the Python version, a snippet of your code, the
exact error message, and what you've tried so
far. ChatGPT lists a number of possible reasons
for the failure, including one you haven’t
thought of, which gives you a new point to test.

Before diving deep into debugging, you check the
basics: Is the CSV file present in the expected
folder? Is the network connection to the database
dropping? Is the database server running? You add
checks in your script like os.path.isfile() to
verify the file's existence before proceeding.

8. Ask for Help (from online resources and then experts)

6. Keep an Audit Trail (Write down details of the debugging process)

9. Confirm the Fix Works (By testing with it applied and removed)

7. Check Obvious Assumptions (that are fast to verify)

Reflect on the debugging process and identify
any systemic improvements that could prevent
similar issues in the future.
For example, standardizing error and debug
logs, enhancing test coverage, automating
testing and deployment to minimize human
error, and thoroughly understanding
dependencies during the design phase.

Concise Guide to
Debugging Anything (2)

10. Fix the Underlying Process (Find the design or systemic problem)

To prevent similar issues, you decide to add
more logging items and robust error handling to
your script. You also incorporate a unit test
that runs automatically on every git commit,
testing a range of CSV formats and special cases
to ensure the script is resilient to common data
issues.

Based on Debugging: The 9 Indispensable Rules for Finding Even the Most Elusive Software and Hardware Problems by David Agans; Examples and guide by andypi.co.uk

https://debuggingrules.com/
https://andypi.co.uk/

